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Nonlinear integral equations for the boundary functions which determine conformal 
transformations in two dimensions are developed and analyzed. One of these equations 
has a nonsingular logarithmic kernel and is especially well suited for numerical computa- 
tions of conformal maps including those which deal with regions having highly distorted 
boundaries. Numerical procedures based on interspersed Gaussian quadrature for ap- 
proximating the integrals and a Newton-Raphson technique to solve the resulting non- 
linear algebraic equations are described. The Newton-Raphson iteration converges re- 
liably with very crude initial approximations. Numerical examples are given for the mapping 
of a half-infinite region with periodic boundary onto a half plane, with up to nine-figure 
accuracy for values of the map function on the boundary and for its first derivatives. 
The examples include regions bounded by “spike” curves characteristic of Rayleigh- 
Taylor instability phenomena. A differential equation is derived which relates changes in 
the map function to changes of the boundary. This is relevant to potential problems for 
regions witfi time-dependent boundaries. Further nonsingular integral formulas are derived 
for conformal mapping in a variety of geometries and for application to the boundary- 
value problems of potential theory. 

I. INTRODUCTION 

In many physical problems, a function which is harmonic in a specified region must 
be determined from its values or normal derivatives on the boundary. In an important 
subclass of such problems, the main objective is to calculate the boundary values of the 
function from the boundary normal derivatives, or vice versa. When the region is two 
dimensional, it can be identified with a region R, of the complex z plane and cqmplex 
variable theory can be applied. The harmonic function can be identified with the real 
or imaginary part of a complex function f(z), analytic in R, . Because the Laplace 
equation is conformally invariant, if the conformal mapping of R, onto a region R, 
is known then the solution of the boundary-value problem in R, can be inferred from 
that in R, . The conformal map may have to be determined by numerical rather than 
analytic means and when the boundary of R, is specified by discrete numerical data, 
this is necessarily so. 
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The current state of the art in numerical conformal mapping is still largely sum- 
marized by the books of Gram and Gaier [ 11. Some further developments are given by 
Ives [2] and Hayes et al. [3]. As described in these references, the techniques for numeri- 
cal solution of the equations defining the mapping function work best, if at all, when 
the shapes of &and R, are similar. If this is not the case, preliminary analytic mappings 
must be applied to bring R, into suitable shape before the numerical work is under- 
taken. For example, if an airfoil is to be mapped onto a circle, the airfoil must first be 
“premapped” onto an approximately circular region by a device such as the 
von Karman-Trefftz transformation, or even a series of such devices. 

The present work was motivated by the authors’ study of the Rayleigh-Taylor 
instability of the interface between two irrotational incompressible fluids. The fluid 
flow is governed by velocity potentials determined from data on the fluid interface. The 
velocity potentials are harmonic functions. Because the interface changes in time, the 
potential problem must be recalculated at each time step in the evolution of the system. 
The interface may become quite distorted in shape. Moreover, a small fluctuation in 
the shape of the interface can grow quite rapidly. Rapid growth of such fluctuations 
may appear in a numerical calculation regardless of whether they are due to physical 
assumption or mathematical inaccuracy. Thus, whatever technique is applied to the 
potential problem for hydrodynamic systems of this character faces severe tests with 
regard to accuracy, computer speed, and applicability to distorted regions1 

II. FORMULATIONS 

The questions addressed in this paper can be grouped in three categories: 

(1) First, suppose F(w) is a function of the complex variable w, w = u + iv, and 
is analytic in a region R, of the w plane. Let its real and imaginary parts be F,(u, v) 
and F,(u, u). If R, is unbounded, suppose also that as w - co within the region 

F(w) -F(a) + O(l w I-‘), 

where F(co) = FR(co) + iFi is a constant, not necessarily equal to zero. One may 
ask how to determine the function F(w) in R, if either FR or F, is specified along its 
boundary. One approach is to use Cauchy’s formula to express F(w) as an integral over 
the boundary. If the integrand is properly chosen, boundary values of either F, or F, 
(but not both) will contribute. As a limiting case, the values of F, (or FI) on the 
boundary are given in terms of a boundary integral depending on F, (or FR). The 
integrand has a pole singularity and the integration is of the principal value type. An 
integration by parts can transform this into an integral with a logarithmic singularity 
in the integrand. An alternative is to apply one of Green’s theorems to the harmonic 

1 For an alternative approach to numerical potential theory dealing directly with Green’s integral 
equations, see [4]. Also, see [5] for an alternative mapping technique based on the Schwarz-Christoffel 
formula. We thank the reviewer for this citation. 
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functions FR or Fl , in conjunction with a Green’s function for R, . This leads to 
integrals along the boundary with logarithmically singular integrands, from which 
the principal value integrals can be obtained by integration by parts. 

(2) Second, suppose a region R, in the complex z plane, z =x + iy, is given 
and an analytic function z = z(w) (or perhaps w = w(z)) is sought which maps R, 
conformally onto R, . This can be regarded as an application of (1). A variety of non- 
linear integral equations relating the boundary values of x(u, u), ~(u, U) (or u(x, y), 
u(x, y)) can be developed. With regard to the applications we have studied, the most 
useful equations seem to be those carrying the logarithmic singularities. The most 
practical method for evaluating these integrals seems to be a combination of quadra- 
ture rules of the Gaussian type (open rules) and of the Gauss-Lobatto type (closed 
rules). We shall refer to this as the technique of “interspersed Gaussian quadrature.” 
It leads to nonlinear algebraic equations which can be solved by the Newton-Raphson 
method. The main task of the present paper is to explain these procedures. 

(3) Third, letf(x, y) be a harmonic function defined in the region R, . One may 
ask how to determine f(x, y) from values off or values of the normal derivatives 
af/lan on the boundary, and also, how the boundary values off and af/lan codetermine 
each other. These questions can be answered by application of (1) and (2) above. 

The remainder of this paper is divided into two parts. In Part A, we analyze the 
three cited questions in a context which we call even-periodic geometry. This refers to 
functions F(w) such that FR(u, v) is periodic and even in the u-variable. It also refers 
to regions R, with boundary specified by y = j(x), where 9(x) is periodic and even 
in x. For the purposes of this paper, a periodic function will always have period 277. 
This was the class of problems encountered first in our Rayleigh-Taylor study. 
Accordingly, we develop here a structure of theoretical formulas and numerical 
analysis for which a fair quantity of illustrative numerical results can also be reported. 

In Part B, we seek to round out the discussion by extending the results to other 
geometries closely related to even-periodic geometry. This permits contact with 
existing formalisms, e.g., those that map a closed region onto a circle. This context 
will be called circle geometry. No numerical experiments are described for these 
cases. However, the analogy to Part A is quite close and we believe the methods 
applied there should be equally effective in the geometries of Part B. 

In Section III, a set of integral formulas is obtained interrelating FR and 4 on the 
relevant boundary of R, for even-periodic geometry; this is the intervai 0 < u d 7r of 
the u-axis. Three nonlinear integral equations defining the conformal mapping 
problem in this setting are obtained, both in singular and in nonsingular form. 
Formulas for solving the boundary-value problem for harmonic functions are also 
given. 

In Section IV, the technique for solving the third of these integral equations for the 
mapping problem in terms of interspersed Gaussian quadrature rules is described in 
detail. In Section V, accuracy and rates of convergence of the method are discussed in 
terms of specific examples. 
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In Section VI, a differential approach to the mapping problem is undertaken. This 
provides a linear relation between a small change in the boundary and the resultant 
small change in the mapping function. When the boundaries of a physical system 
change in time, the consequent changes in the mapping function can be inferred from 
a set of differential equations in the time variable. 

In Sections VII and VIII (in Part B), analogs of these results are obtained for 
periodic and circle geometries. One of the variants that emerges is the already well- 
known equation of Theodorsen and Garrick [I]. The key equations when the region 
R, of interest is a half-plane (linear geometry) are briefly noted in Section IX. 

Depending on the geometry under consideration, the regions R, will be taken as 
upper-half planes (rather than lower), or exteriors of circles (rather than interiors). 
The transformation F(w) -tF*(w*) carries a function analytic in a portion of the 
upper-half plane into a function analytic in the corresponding portion of the lower- 
half plane. The transformation F(w) --*(l/w*) carries a function analytic in the 
exterior of the unit circle into a function analytic in the interior. On the boundaries 
of their respective domains, these transformation carry FR into +FR and FI into -F, . 
By these rules, any equations explicitly treated in this paper can be easily replaced by 
equations applicable to the complementary regions. 

Lastly, we note that the mapping of certain types of irregular regions has not been 
addressed in this paper. For example, the boundary curve y = 9(x) referred to above 
will be understood to be single valued. If, in fact, the boundary “doubles back” on 
itself several resorts are possible. One could base the parametrization of the boundary 
and the quadrature rules on a more convenient parameter such as arc length, or one 
could introduce a suitable premap. The relative merits of such alternatives may vary 
from case to case, and their appraisal is left for another study. In our examples, y(x) 
is also differentiable, but this is not an essential limitation to the method. 

PART A 

III. EVEN-PERIODIC GEOMETRY 

1. Preliminaries 

Let R, denote the upper-half strip of the w plane defined by 0 < u < n, 0 < v < co. 
Let F(w) be analytic in the upper-half w plane (and, in particular, in the interior of R,,.). 
As already prescribed in Section II, we denote its real and imaginary parts as FR(u, v) 
and F,(u, a), and assume that as w - co in R, , F(w) approaches a constant F(w) to 
order 1 w 1-l. F(w) will be called an even-periodic function if it satisfies two conditions: 

F(w) = F*( - w*), (3.la) 

F(w) = F(w + 24. (3.lb) 
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The first condition implies 

FR(U, v) = Fd-u, v), 

w4 4 = -4t -4 4, 

F(m) = FR(co) = real. 

Moreover, both FI and aF,jau vanish at u = 0 and u = Z-, for v > 0. 
Under suitable regularity conditions, FR and FI have the Fourier expansions 

FR(% 0) = FR(~) + f a,e-nv cos nu, 
T&=1 

FIG, 4 = -f a,e-nv sin nu, 
V&=1 

where the coefficients {a,} are real. This indicates that F(w) should be completely 
determined by specifying FR for v = 0, or by specifying F, for Y = 0 and FR(co). 

Let w and w’ be restricted to the interior of R, . Then (cos w - cos w’) vanishes 
only at w = w’, and (cos w* - cos w’) cannot vanish. By Cauchy,‘s theorem, 

and 

0 = jc (-OS ,,:~:“,,, w’ dw’, 

(3.2a) 

(3.2b) 

where C is any closed contour in R, which encircles w counterclockwise. Take C along 
the boundary of R, . The upper horizontal part of C is along v = u, , with the under- 
standing that the limit v, -+ cc will be taken. We can also write 

and 
sin w'F(‘(lt") O = jc (-0s w* - cos J dw'. 

(3.3a) 

(3:3b) 

In the next subsection, we encounter integrals over the interval 0 < u < 7r whose 
integrands become singular when the parameter w approaches a real value u. A basic 
rule for this situation is expressed by 

lim 1 
c-0 u - 24’ + ic = p.v. & - ri 6(u - 24’) sign(E), 
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where p.v. stands for principal value and S(u - u’) denotes the Dirac delta function. 
The relation is to be applied under an integral sign. 

Then if w approaches the real value u from the interior of R, and 0 < u’ < n, we 
find 

!& cos f’l”;,, u’ 

sin u = p.v. cos 24 - cos u’ + ni S(u - u’) (3.4a) 

and, similarly, 

lim sin u’ sin u’ 
w*u cos w - cos u’ = p.v. cos u - cos u’ + ni 6(u - u’). (3.4b) 

There are companion rules for differentiation under an integral sign: 

$ log j cos u - cos u’ / = p.v. sin u’ 
cos u - cos u’ ’ 

$7 log / 
sin &(u - u’) sin u 
sin +(u + u’) = “‘* cos u - cos u’ ’ (3Sb) 

where it is noted that the arguments of the (natural) logarithms are absolute values. 

2. Representations of F(w) in Terms of Boundary Values 

Combining (3.2a) and (3.2b), we get 

F(w) = TE 1 jc ,,,“II”’ “,‘I, \,,, + [j F(w’) dw’ * 
c cos w * - cos w’ 11 . 

The upper horizontal part of the contour C is now allowed to recede to infinity while 
the other parts approach the boundaries of R, . We find 

s 
s 

F(N,) = -i sin IV FR(u’, 0) du’ 
-. 

0 cos w - cos u’ 77 

Proceeding in a similar way from (3.3a) and (3.3b), we have 

whence 

(3.6a) 

(3.6b) 

Equations (3.6a) and (3.6b) are the desired relations. They show how over the whole 
of&, F(w) can be determined from knowledge either of FR(u, 0) or of F,(u, 0) and 
the (real) constant FR(co). 
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Also, if we let Im(w) --f +cc in (3.6a), we get 

FR(u3) = ST FR(U’, 0) $ . 
0 

(3.7) 

3. Integral Relations among Boundary Values 

For u real and 0 < u ,( 7r, we can relate F,(u, 0) to FR(u, 0) by taking the limit w + u 
and applying (3.4a). The real part of the resulting equation is an identity: the ima- 
ginary part reads: 

F,(u, 0) = - sin u p.v. .r 77 FR(u’, 0) du’ 
. 0 cos 24 - cos 24’ 7r 

(3.8a) 

Conversely, we can relate FR(u, 0) to F,(u, 0) by using (3.6b) and (3.4b). This gives 

(3.8b) 

Equations (3.8a) and (3.8b) are sometimes called finite Hilbert transforms. If these 
integrals are integrated by parts with the aid of (3.5) the contributions at the end 
points vanish and we have 

(3.9a) 

F&t, 0) = FR(a3) - IoT log I cos u - cos u’ j “I:; O) F. (3.9b) 

A large family of definite integral formulas can be generated from (3.8a) and (3.8b) 
by choosing suitable functions F(W). Here, we only note two consequences of choosing 
F(w) = 1. 

First, Eq. (3.8a) yields the (well-known) result 

.c T 
sin 24 p.v. 

1 dul = 0. 
0 cos u - cos u’ 77 

(3.10) 

Second, from Eq. (3.6a), 

I 

n sin iv du’ . --_ = 1. (3.11) 
0 cos IV - cos u‘ 7r 

Integrating this with respect to w from w1 to w2 and then letting Im(w,) + co, we have 

s 

n 

0 

log(cos w1 - cos 24’) $- = i(wz - wl) + ST log(cos w2 - cos 24’) $ 
0 

+ --iw, - log 2 (3.11a) 
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after the limit on wp is taken. Finally, letting w1 + ZJ = real, and taking the real part, 
we get the curious but useful formula 

I T log I cos u - cos U’ / $ = - log 2. 
0 

4. Integral Equations for Conformal Mapping 

Let there be a curve in the complex z plane defined by y = j(x). Suppose that for 
all x, 9(x + 2~) = 9(x) and 9(-x) = s(x). A real function j(x) with these proper- 
ties will also be termed even periodic. We shall presume that j(x) is everywhere 
differentiable, though this condition can be relaxed. 

Let z = z(w) be a function analytic in the upper half w plane which conformally 
maps this upper half plane into the portion of the z plane above y = j(x) and carries 
w = ice into z = ice. Let this mapping be standardized by setting x = 0, n for 
u = 0, in, respectively. The mapping can be represented as 

z = z(w) = w + S(w), (3.13) 

where F(w) is an even-periodic analytic function in the upper-half w plane. Then 

x = x(u, u) = u - F,(u, u), (3.13a) 

y = y(u, u) = u + FR(U, 0). (3.13b) 

We shall abbreviate X(U, 0) and y(u, 0) to x(u) and y(u), respectively, and write 
U(X) for the function inverse to x(u). These expressions will maintain these meanings 
throughout the paper. Then for u = 0, we have 

x = x(u) = u - F,(u, O), (3.14a) 

Y = A4 = FRO4 O), (3.14b) 

as parametric equations, with parameter U, of y = j(x). To study these functions, it 
is sufficient to restrict our attention to the region R, of the w plane and the image 
region R, of the z plane. The equations of the previous subsection are applicable with 
FR(u, 0) = y(u), E;(u, 0) = -[x(u) - u]. Let lim,,, Fa(u, v), previously called F(a), 
be here denoted by y, . Then 

.c * 
x(u) = 24 + sin u p.v. Au’) Lid 

0 cos u - cos 24’ 77 
and 

With the function j(x) specified as the input, and taking into account that 

(3.16) 

A4 = %-+4), (3.17) 
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either of the equations (3.15) or (3.16) constitutes a nonlinear integral equation for the 
unknown function x(u). If (3.16) is the equation employed, y, is also unknown, but 
can be expressed in terms of x(u) by evaluating (3.16) either at x = u = 0 or at x = 
u = rr; e.g., 

(3.18) 

In (3.18), the integrand is not singular at U’ = 0, but reduces to (2/7r)(dx/du - l)U=0 . 
An alternate equation can be derived starting with Eq. (3.9b): 

The integral here is seen to separate into two terms. In the first term, it is more 
convenient to take the x variable as the independent variable, writing U’ = u(x’), 
u = u(x), and replacing J(U) by the equivalent 9(x). In the second term, Eq. (3.12) 
applies. We find that 

9(x) = y, + log 2 + IV log / cos U(X) - cos U(X’)l $ ) (3.19) 
0 

which is a nonlinear integral equation for the unknown function U(X) and the unknown 
constant y, when y(x) is specified. The constant yrn can be eliminated by, e.g., sub- 
tracting from (3.19) the same equation evaluated at x = U(X) = 0: 

m = 5x0) + Ior log / 
cos u(x) - cos 24(x’) dx’ -- 

1 - cos 24(x’) 7T . 
(3.20) 

However, we prefer to retain y, explicitly up to the stage of numerical computation. 
Equation (3.19) must be supplemented with the conditions u(0) = 0 and U(V) = 7r 

in order to define a unique solution. Otherwise, the transformations 

cos u(x) + a cos u(x) + b, y, + ym - log a 

would generate a multiplicity of solutions. 
For the numerical solution of the integral equations (3.15) (3.16) or (3.19), some 

rule for approximate evaluation of the integral will be required; to this end, it is 
desirable to reexpress the integrals in nonsingular form. Referring to Eq. (3.10) and 
again to Eq. (3.12) we see that the three integral equations can be regularized as 
follows: 

x(u) = u + sin u i 
l7 y(d) - y(u) du’ 
o cos 24 - cos u’ 7r ’ 

(3.21) 

s n 
JJ(d = J’s - 

sin u’[x(u’) - u’] - sin(u)[x(u) - u] du’ 
0 cos u - cos u’ -3 (3.22) 

i7 

cos u(x) - cos u(x’) dy’ 
cos x - cos x’ 

-- . 7r 
(3.23) 
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There is a more general method of regularizing Eq. (3.19). Suppose that for the 
curve y = j&(x), the solution {u,(x), (y,),} to (3.19) is known. Then by comparing the 
equations for each case, we obtain 

This can be regarded as comparing the conformal map for the curve j(x) to that of 
j&,(x). Equation (3.23) corresponds to the special case in which j,(x) = (y,), = 0 and 
z&(x) = x. 

The key theoretical result of the present section is the third integral equation of this 
list, Eq. (3.23). This is the one that yielded the most satisfactory results, by procedures 
that will be detailed in the next section. The first two equations also yielded good 
results, provided the amplitude of the j(x) curve and its maximum slope are not too 
large. 

Hereafter, the function u(x) will be called the boundary map function associated 
with the conformal transformation z = z(w) defined by j(x). Further, its inverse x(u) 
will be called the inverse boundary map function. The determination of u(x) is the key 
to the determination of all other features of the conformal map. 

An additional integral equation can be inferred from (3.9a); this one would suggest 
use of y as the independent variable. We have not investigated this equation. 

5. Relations among Harmonic Functions, Their Boundary Values and Boundary Normal 
Derivatives 

Suppose thatf(x, y) satisfies the Laplace equation 

in the region of the z plane lying above the boundary curve y = j(x) where j(x) is 
even periodic. Supposef(x, y) is even periodic in the x variable. Then af(x, y) = 0 
for x = 0, 77. Let f(x), fs( x , andf,(x) represent the function and its tangential and ) 
normal derivatives along the boundary. The tangential derivative is taken in the 
direction of increasing x and the normal derivative is taken into the region of definition. 
Then 

f(x) = f(x, m), (3.24) 

fs(x) = [ af$; y, + 5s iif(i:;y)]U-L(.i/[l + (dj/dx)2]‘/2, (3.25a) 

4(x) Xx, Y) fn(x) = [- dx ax + ~J]vE5c,/ll + W/W21”2. W5b) 

It is also useful to define a modified normal derivative&,(x) by 

f&x) = [ - g g + $1 y=jr(l) = fnW[l + hWW”l”“- (3.26a) 

581/36/3-T 
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A companion equation to this one is given by differentiatingf: 

dfC-4 ~- = 
dx 

= fs(x)[l + (d~/dx)“]““. (3.26b) 

We seek integral equations interrelating f(x), fS(x), &(x), or equivalently, f(x), 
df (x)/dx, fnSp(x) and expressions for f(x, y) in terms of them. The first step is to 
reformulate the problem in the w plane. 

Let z = z(w) be the conformal map which carries the upper-half w plane into the z 
plane above y = j?(x) as detailed in the previous subsection. Letf(u, V) be the transform 
bff(x, v) as defined by 

f(u, 4 =fW, 4 Au, 4). 

Then J(f(u, V) is a harmonic function, and satisfies the Laplace equation 

(a,2 + a,z)f(u, v) = 0. 

We define the boundary functions f(u), fS(u), fn(u) by 

304 = 3&Y O), 

fs(u) = 2!g!” ) 

3Ju) = [qq=, 

It follows that, with the map of the boundary specified as above by x 
inversely, by u = U(X), 

364) = f(x), 

fs(q = J!Yg (qL-l, 

fn(4 = fnsoW (q))‘. 

Consider the function F(w) defined by 

i 

77 

F(w) = --i sin u f(d) du’ 
‘0 COSW-COSU’ T 

(3.27) 

(3.28) 

(3.29a) 

(3.29b) 

x(u), or 

(3.30) 

(3.31a) 

(3.31b) 

(3.32) 

Then F(w) is verified to be even-periodic analytic function in the upper-half w plane. 
Taking the limit u + co, we have 
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The considerations of subsection III.2 follow. The functionf(u, V) solving the Laplace 
equation in the w plane and havingf(u) as a boundary value is identified as FR(u, u). 
Moreover, the function i dF(w)/dw is even periodic when F(w) is. Its boundary value is 

i [.!!!3!$]u=, = - “I: O) + i aFRi!$ O) = fn(U) + ifs(U). (3.33) 

BY (3.3% 

lim i dF(w) = 0 
“~+a --Jr . 

Applying Eq. (3.9b) to F(w), applying (3.8) to i dF(w)/dw, and converting via (3.31) 
and du’ = (du(x’)/dx’) dx’ to integrations in the z plane, we get the list of boundary 
equations: 

f(x) =fm + jon 1% I cos u(x) - cos u(x’)l f&x’) 2: ) 

df(4 du(x) . n .f%&‘) d-x' __ = 
dx 

- dx sin u(x) p.v. 
s 

(3.35a) 
() cos u(x) - cos 24(x’) 57 ’ 

Here, 

fns&> = 44 p.v. s,‘ sin 4WffCWf~'~ c 
cos u(x) - cos u(x ) ?T 

(3.35b) 

fa = QE,f(X,Y) = jo=f(x)$$' $. 

In view of (3.10) and (3.19), the singular integrals can be regularized as follows: 

.f(x) =f= + jam 1% I cos u(x) - cos u(x’)l [,fnsa(x’) - fn,&)] $ 

+ fnsaW(Rx> - Y-9 - 1% 2), (3.37) 

df(x) sin u(x) 1 
rr (du(x)/dx) fn,&‘) - (du(x’)@‘) f&x) clx -=- .- _ 

d,x (3.38a) 
0 cos u(x) - cos u(x’) 7f ’ 

m fns&> = J-” (du(x)/d,u) sin u(x’)(df(x’)/d,y’) - (du(x’)/d-y’) sin zl(.u)(df(s)/d.y) LAY’ 
cos U(X) - cos U(.Y’) 

(3.;8h) 

These are the three basic equations for interrelating boundary values and derivatives 
of even-periodic harmonic functions. The logarithm and denominator coefficients are 
essentially the Green’s function and Green’s function normal derivative for this 
geometry. The complexity of the Green’s function for the arbitrary bounding curve 
y = j(x) is encompassed by a single function U(X) of one variable, which must be 
determined in a preliminary calculation. When u(x) and dujdx are known, the above 
integrals may be calculated by interspersed Gaussian quadrature, as described in the 
next section. 
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IV. NUMERICAL SOLUTION OF THE CONFORMAL MAP EQUATIONS 
IN EVEN-PERIODIC GEOMETRY 

In this section, an efficient numerical procedure is described for finding the bound- 
ary map function u(x), and hence the entire conformal map. 

1. The Crowding Phenomenon 

As already noted, [I, 21 provide a variety of numerical conformal map procedures. 
They succeed by iterative and perturbation techniques when the boundary already 
approximates the one onto which it is to be mapped. When, however, the mapping 
requires a significant distortion of the original boundary, there is an underlying 
mathematical phenomenon to be confronted which we shall call “crowding.” its 
impact can be indicated by some numerical examples. Figure la shows the region R, 
of the z plane with the lower boundary 

y = j(x) = -D cos x (4.1) 

for the case D = 5. Figure lb shows the region R, from which it is conformally 
mapped and (4.1) is the image of o = 0. The grid of curves in R, is the image under 
the mapping of the rectangular grid in R, . For portions of R, remote from y = p(x), 
the image mesh becomes approximately rectangular, and in fact, 

(4.2a) 

(4.2b) 

as u --f co (and y -+ cc). 
Near y = j(x), however, the grid geometry is dominated by the requirement that 

the images of u = constant must be orthogonal to the boundary. This implies, as seen 
in Fig. la, that proceeding from y = j(x), the images of u = constant on the left side 
of the boundary must veer left and are crowded against x = 0 before eventually 
straightening out and going vertical. It follows that in th/e correspondence of boundary 
points defined by u = U(X), any interval dx on the left side of the boundary of R, will 
be crowded into a smaller interval du on the u-axis in R, . Since the whole interval 
0 < x < 7r is mapped onto the whole interval 0 < u < rr, there must be a compensa- 
ting spreading of intervals dx on the right side of R, . We take du(x)/dx as a numerical 
measure of this effect with du/dx < 1 signifying crowding and du/dx > 1 signifying 
inverse crowding i.e., spreading. 

For curves of the class f(x) = -D cos x with D > 0, maximum crowding is at 
x = 0 and maximum spreading is at x = rr. Table III gives the values of du/dx at 
x = 0 and x = 7r for D = 1, 5, 10, 100, as calculated by the techniques to be described 
in the next subsection. The magnitudes of crowding and spreading, as measured by 
du/dx, are seen to be of entirely different character for D > 1. The spreading in this 
class of examples increases slowly with D, while the crowding increases exponentially 
with D that is, du/dx goes down exponentially. If a numerical calculation of the map 



a 

FIG. 1. The rectangular grid in region R, of the w plane (b) is mapped into the grid of curves in 
region R, of the z plane (a) under the conformal mapping z = z(w) which carries the u-axis of the 
w plane into y = -5 cos X. The small black square in the lower left corner of R, is thereby mapped 
into the shaded region of R, . 
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proceeds without recognition of the possibility of extreme crowding, there will be a 
danger of significant, or total, loss of accuracy, particularly with regard to the trough 
region of the boundary curve. 

Suppose, for example, one seeks to map u =: 0 onto y = - 10 cos x by solving 
either of the two integral equations (3.21) or (3.22). Suppose, also, that one seeks to 
approximate the u-integral in either of these equations by a quadrature rule based on 
100 equally spaced points in the interval of integration. Then, as may be inferred from 
Table I, none of these u-points, except u r= 0, corresponds to the negative half of the 
9(x) curve. And for D = 5, only one such u-point corresponds to the negative half. 
The variation with x of the crowding is shown for this case by the logarithmic plot of 
dujdx in Fig. 2. In the trough region, the crowding is approximately exponential. 

The equation for conformal mapping given most prominent attention in the litera- 
ture is the Theodorsen-Garrick equation, which (see Section VlII.3) is essentially 
Eq. (3.21) in a different guise. This discussion of crowding points up the inadequacy 
of the Theodorsen-Garrick equation when applied to a highly distorted region, 
regardless of the technique of solution. 

We shall turn, then, to the third integral equation, Eq. (3.23), where the natural 
variable of integration is x rather than U. This equation has the additional advantage 
that the logarithmic integrand is a smoother function than the integrands in Eqs. (3.21) 

FIG. 2. The plot of du/dx for the case y = -5 cos x shows an approximately exponential varia- 
tion of the crowding with x in the trough region. 
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and (3.22). As a result its integral can be better approximated by a quadrature rule. 
The question of how best to approximate the integral is discussed next. 

2. Gaussian Quadrature Methods 

Let the N solutions of the equation 

cos Nx -7 0 

in the interval 0 < x f r be labeled xi , 1 < i < N and let the N 

sin Nx = 0 

in this interval be labeled Xi , 0 < i < N. Thus 

xi = (i - 3) T/N, .Fj = in/N. 

‘+ 

(4.3) 

1 solutions of 

(4.4) 

(4.5) 

Let f(cos x) be a function with at least 2N continuous derivatives with respect to cos x. 
Then the Gauss-Chebyshev quadrature formula reads 

“,f(cos x) $ = ; % f(cos xi) + E(N), 
t=l 

where the error term E(N) can be estimated from 

E(N) = 
2f@N)(COS f) 

4N(2N)! ’ O<f<rr. 

For brevity, Eq. (4.6) without the error term will be called the C-rule of order 2N. The 
C-rule is exact iff(cos x) is a polynomial in cos x of degree less than 2N or equivalently 
if f(cos x) represents a finite Fourier-cosine series terminating before the cos(2Nx) 
term. The xi will be called C-points. 

An alternative to (4.6) is the Gauss-Chebyshev-Lobatto formula, which reads 

I ” f(cos x) $ = f i eJ(cos -U,) - E(N), 
0 2=0 

(4.7) 

where l i = $ for i = 0 or i = N, and ci = 1, otherwise. When the error term is 
dropped, this will be termed the L-rule of order 2N and the Xi will be called L-points. 
Equation (4.6) has the same form of error term as Eq. (4.6) but with opposite sign. 
This is consistent with the fact that the average of (4.6) and (4.7) produces an L-rule 
of order 4N. 

In some standard texts, equivalent rules are given in terms of T,(t) and U,(t), the 
Chebyshev polynomials of the first and second kind. The transition to trigonometric 
form is effected by setting t = cos x and 

T,(t) = cos nx, U,(t) = sin nx/sin x. 
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Now consider the application of these rules to an integral of the type 

cos u(x) - cos u(x’) dx’ 
cos x - cos x’ I- TT (4.8) 

which occurs in the third integral equation. Let J,(x) and .ZJx) be the approximations 
by the C-rule and L-rule to J(x). Let xj be a C-point and Xj be an L-point, We have: 

og cos u(q) - cos U(Xi)l - I&), I (4.8a) 

where 

JL(Xj) = ; i Ei log I cos U(Xj) - cos u(ZJ - ZL(Xj), (4.8b) 
2=0 

Z&j) = f f log I cos Tj - cos xi I, 
I=1 

(4.9a) 

ZL(Xj) = $ f Ei log / cosx,- COSXiI. (4.9b) 
2=0 

The expressions for Zc and IL can be simplified by using the identities 

fJ (cos x - cos Xi) = 2-‘N-1’ cos Nx, 

N-l 

L!’ 

cos x - cos Xi) = 2-fN-‘) sin Nxlsin x. 

These hold because (a) in each case, both sides of the equation represent polynomials 
in cos x with the same zeros and (b) an analytic continuation of x into the complex z 
plane with Im z --f co yields the overall coefficient. Since the sum of logarithms is the 
logarithm of the product, we have 

Z,(x) = --log 2 + (l/N){log 2 + log ( cos Nx I}, 

IL(x) = -log 2 + (l/N){log 2 + log 1 sin Nx I}. 

Inserting Eqs. (4.10) into Eqs. (4.8) we obtain 

JC(Xj) = - (1 - +, 1 og 2 + + ,; log I cos U(Zj) - cos 24(x&, 
2=1 

(4.1 Oa) 

(4. lob) 

(4.11a) 

JL(Xj) = - (1 - +, log 2 + ; i zi log / cos u(xJ - cos u&)1. (4.11 b) 
2=0 

These rules are next applied to solve the third integral equation. 
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3. Calculational Procedure 

We are given a function f(x) which is even periodic and single valued. We seek an 
unknown single-valued function u(x) with u(0) = 0 and u(r) = V. The equation to 
be solved is 

9(x) = Ym + low 1% / 
cos u(x) - cos u(x’) dx’ 

cos x - cos x’ 
-. 
m- 

(4.12) 

We consider the sequences {xi}, {Xi> as defined in (4.5). The two sequences interlace 
and taken together comprise 2N + 1 points on the interval 0 < x < n including the 
end points X0 = 0, XN = 7~. Corresponding y and u sequences are specified by 

Yi = P(Xi), Yi = jYxi), (4.13) 
and 

Ui = U(Xi)p Ui = U(Xi)* (4.14) 

Because U, = 0, iiN = VT, a total of 2N - 1 subscripted U’S are unknown. 
We now apply the C-rule to (4.12) to evaluate j(x) when x is an L-point and apply 

the L-rule for evaluation when x is a C-point. For x = 0, we have, by (4.1 la), 

y. = y, - (1 - -&) log 2 + ; gr log / 1 - cos ui I) 

which serves to express y, in terms of the u’s at C-points. Further, for 1 < j < N, 

Yj = Ym 4 NJ 
1 - L log 2 + ; ; Ei log ( cos Uj - cos ui 1 

2=0 

so that 

Similarly, 

Yi - 

N 

cos uj - cos ui 1 + ; ,I log 1 1 - cos Ui 1 = 0 
2=1 

for 1 <j < N. (4.16) 

yo - ; ,t {log / cos ci - cos ui 1 - log 1 1 - cos Ui 1) = 0 
2=1 

for 1 <j < N - 1. (4.17) 

Equations (4.16) and (4.17) constitute a set of 2N - 1 nonlinear algebraic equations 
for 2N - 1 unknowns which are the ui , 1 < i < N, and iii , 1 < i < N - 1. 

The integrand of (4.12) will have derivatives with respect to cos x’ to the same order 
as u(x’) for x # x’, and to one order less for x = x’. Thus, for sufficiently smooth u(x), 
the quadrature rules applied to (4.12) should have high accuracy for moderate values 
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of N. Because we have not sought to evaluate, say, j(x) at C-points by using the C-rule, 
we bypass the question of how to evaluate integrands at x = x’, that is, of how to 
calculate (du/&) before we have determined u(x). Note that we have taken the bound- 
ary conditions u(0) = 0 and u(n) = r into account by using a closed quadrature rule 
(L-rule). Also, note that Eq. (4.17) has the same form that would result from naively 
applying the Gauss-Chebyshev quadrature rule to Eq. (3.19) with no concern for the 
logarithmic singularities. However, it is only valid when X, is an L-point. This process 
of evaluating integrals by the C-rule to avoid calculating derivatives at L-points, and 
vice-versa, may be referred to as “interspersed Gaussian quadrature.” It is equivalent 
to evaluating the integrand at x = x’ by interpolation based on a Fourier-cosine 
representation of 2N terms and then using the L-rule of order 4N. The inter- 
polation limits the accuracy to order 2N. 

Let F3(u, ii) and Fj(u, ii) denote, respectively, the left-hand sides of Eqs. (4.16) and 
(4.17), with the sets of variables {ui} and {UJ denoted, respectively, by u and ii. Then 
the system of equations to be solved for u and ii is 

Fj(U, ii) = 0, 1 <.i,<N, (4.18a) 
and 

Fj(U, ii) = 0, 1 <j,<N- 1. (4.18b) 

This is best done by a Newton-Raphson technique. 
Suppose that utn) and ii’%) represent the nth stage of an approximation to the solution 

to (4.18a), (4.18b). Let u, ii denote the exact solution and let 

u = dn) + Au, fi = $n) + & 

with du and dii presumed small. 
Then, if second-order terms in du, dii are dropped, 

and 

(4. I9a) 

where the F’s and their partial derivatives are evaluated for I+“), 5(n). By (4.17), 

Hence, from (4.19b) 

9b) 

(4.21) 
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Substituting (4.21) into (4.19a) we get 

where the N x N matrix Qjlc is given by 

- (4.22) 

(4.23) 

The procedure is then the following: Given an approximate solution II(~), iioz) of 
Eqs. (4.16), (4.17) one calculates the approximate correction du by solving the linear 
equation (4.22). Then dii is calculated from (4.21) and the next approximation to 
(4.16), (4.17) is given by 

U("tl) = U(n) + Au, $ntl) = c(n) + & 

The approximation procedure is iterated until converge to the desired numerical 
accuracy is obtained. The problem of finding a reasonable initial approximation 
u(o) , irco) to generate a sequence {I+~), iicn)} which converges to the correct answer is not 
as hard as it looks; guidelines for this will be set forth in subsection (V.2). Then y, 
can be calculated from (4.15). 

The net result is to produce an evaluation of the function U(X) at 2N + 1 equally 
spaced data points on the interval 0 < x < n. Each stage of the Newton-Raphson 
iteration requires inversion of an N x N matrix. 

As is made plain by the formulas of (111.5), applications of the conformal map 
procedure may require knowledge of du(x)/dx as well as u(x). A feasible method, and 
perhaps the most accurate one in this scheme of calculation, is to go back to(4.12) and 
apply the C-rule when x is a C-point, and the L-rule when x is an L-point. 

Specifically, the C-rule applied for x = xj yields 

yj = y, + $ ,; 1 og I cos uj - cos I.$ 1 + f&.(x,), 
z-1 

where 

Further, the L-rule applied for x = Xj yields 

jj = J& + $ .t Ei log / COS iij - COS iii / + KL(,Y,). 
2-O 
i#j 

(4.24a) 

f&9] 

(4.24b) 

(4.25a) 
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For the cases Xi # 0, Zj # rr, the calculation of KL has the same form and the same 
result as for Kc : 

KL(Zj) = log 2 + f log 1 J$+ ($),i, 1. (4.25b) 

For xi = 0 or Xj = 7r, sin i& = 0 and 

1 
KLCG) = $ ZN [ 

__ log 
cos u(x) - cos iij 

cos x _ cos xj 1 + & log I cos x - cos % I - I,o] 

= log 2 + f log 1 & &,=+ I (4.25~) 

Then (4.24) and (4.25) permit calculation of dujdx at the data points in terms of the 
already calculated values of yrn and u(x) at these points, and provide a certain con- 
sistency between the C-rule and L-rule calculations. This method for calculating 
du/dx works well even when dujdx varies over many orders of magnitude due to the 
crowding phenomenon. 

4. Additional Calculational Considerations 

For the programming of the map calculation on a computer, the following points 
may be noted: 

(a) In general, the sum of logarithms should be replaced by the logarithm of a 
product, so that the number of logarithms to be computed per Newton-Raphson step 
is of the order of 2N rather than 4N2. However, in cases of severe crowding and large 
IV, the accumulated product of factors like (cos ui - cos uj) can go off scale, i.e., 
become less than 1O-3oo and some adjustment of the product calculation should be 
made. Since most of the computer time is used to solve the linear equations, this is a 
small effect. 

(b) The coordinates for the mapping problem should, if possible, be set up so 
that the crowding is in the neighborhood of u = 0, rather than u = 7r. This has been 
done in our numerical illustrations. Otherwise, a set of u-values may differ from rr by 
very small amounts, complicating the task of preserving significant figures. 

(c) When there is significant crowding of the u-data near u = 0, the calculation 
of (cos ui - cos uj) by the difference of the cosines will lose significant figures. One 
remedy is to put 

Cos ui - cos uj = -2 sin +(ui - u,) sin $,(ui + uj). (4.26) 

A simpler and usually adequate method is to rephase the formulas in terms of the 
versine function ver(u). Thus 

cos ui - cos uj = ver(u,) - ver(u,), (4.27) 
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where the vet-sine is defined by ver u = 1 - cos u and calculated by 

ver(u) = 2 sin2(u/2). (4.28) 

(d) Equation (4.12) makes reference to cos u(x), but not to U(X) directly. If cos 
u(x) or ver U(X) is taken as the unknown function for the purposes of the Newton- 
Raphson iteration, the repeated calculation of the cosines and sines of u-data can be 
avoided. However, this is not necessarily a time saver in the calculation; in some of 
our numerical experiments, the number of Newton-Raphson steps to reach a desired 
accuracy was increased (by one) when {ver ui} and {ver Ui} were taken as the unknown 
variables, rather than (~~1 and (i7J. 

(e) The terms of the series {us”‘>, {tii”‘} which are taken as the initial approxima- 
tion to the u-data should lie in the interval (0, m), and be monotonic and interspersed, 
i.e., Ul < uicl < lii+r , etc. 

If the initial data are not close enough to the solution, the Newton-Raphson step 
may overshoot resulting in output u-data which do not have these properties. In our 
calculations, when any output u-datum lay outside (0, n), its value was redefind so 
that its distance from the nearest endpoint of the interval was adjusted to be a certain 
fraction 5 f < 1, of its original distance, and the u-data were relabeled so as to make 
the u and ii series monotonic and interspersed. The “adjustment factor” might be 
f = 10-l or less depending on the anticipated crowding. This has no effect if the input 
u-data are a good approximation to the solution. But it greatly expands the range of 
initial data assumptions for which the iteration scheme converges. 

(f) Some simple bounds can be placed on y, in advance of the calculation. By 
Eq. (3.7) and the definition of y, , we have 

ym = IoT y(u) $f = J; j(x(z.4)) $ . (4.29) 

Let ymin and ymax be the minimum and maximum values assumed by j(x). Then 

(4.30) 

Note also that for any U, u’, 

and so 
/ cos 24 - cos 24’ I < 2 

log I cos 24 - cos 24’ I < log 2. 

Then from Eq. (3.19) 

for all j(x) and, in particular, for ymax . This gives the more interesting bounds: 

Y max - 2 log 2 < .Yw d .Ymax . (4.31) 
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V. NUMERICAL EXAMPLES 

1. Values of the Boundary Map Function u(x) and Its Derivative 

Tables I and II display computed values of U(X) and dujdx for 11 arguments as well 
as y, for “cosine” curves 

g(x) = -D cos x (5.1) 

and for “spike” curves 

?(x> = i D(1 + ea> (1 - sFh”,,s x ) (5.2) 

The spike curves are normalized so that 

and 

j(r) = ymax = D, 

j(0) = ymin = 7-D coth($/3), 

The spike curves reduce to cosine curves as p ---f co. They resemble curves that appear 
as Rayleigh-Taylor interfaces and so are logical subjects for numerical experiments. 
The spike curves for which Table II supplies conformal map data are illustrated in 
Fig. 3. 

The calculations followed the prescriptions of Section IV. In an Nth-order calcula- 
tion, values of u(x) and dujdx are found for 2N + I equally spaced points x,, of which 

TABLE 

Boundary Map Function u(x) and Its 

X 

D = 1 (N = 10) D 5 (N 30) 

4x1 du dx 4x) du dx 

0 0 0.2236 9558 9 0 1.16277824 A 10m5 
0.177 0.0734 0584 84 0.2536 2509 0 8.6059 3926 i( IO B 6.7762 1730 A 10 6 
0.2i-r 0.1657 2663 9 0.3443 8025 9 9.41668752 x 10-j 6.95540964 x 10mR 
0.37 0.2962 453 1 2 0.4966 2724 5 8.7694 7213 A IO-" 5.9499 1440 x IO-3 
0.4a 0.4837 3523 7 0.7055 1678 5 6.55746103 x IO-" 0.0393 1682 93 
0.5rr 0.7439 4840 1 0.9561 9009 8 0.0373 8676 74 0.1894 6437 1 
0.671 I .0862 8577 1.2234 449 1 0.1571 2708 8 0.6391 2105 5 
0.7x 1.5111 1779 1.4759 6673 0.4828 6826 9 1.4941 2796 
0.877 2.0088 33 I5 1.6825 6048 1.11460230 2.5210 5348 
0.9x 2.5607 7521 1.8175 9084 2.0413 4531 3.3106 3200 

rr 71 1.8644 9953 7r 3.599 I 3060 

Ym = 0.4126 1222 3 4.0235 9218 
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Sptke Curves 
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lT 

FIG. 3. These three spike curves define the lower boundaries of the regions R, for which conformal 
map data are given in Tables II and IV. 

I 

Derivative for Cosine Curves (Eq. 5. I) 

D = IO (iV = 60) 

44 

0 
5.2354 1694 x IO-” 
6.0737 2218 x 10-O 
5.16803585 x IO-’ 
2.8265 9276 x IO-$ 
8.9369 8586 x 1O-4 
0.0151 6837 20 
0.1332 6193 4 
0.6169 1984 7 
1.6755 4787 

71 

du,:dx 

1.2099 5705 x IO-” 
8.0993 7164 x IO-‘” 
8.9367 2965 x IO-# 
6.97954847 x IO-” 
3.3676 2934 x IO-” 
8.9668 0470 x lO-3 
0.1209 4170 2 
0.7819 4771 1 
2.4347 0375 
4.2012 0040 
4.9038 0596 

0 2.8 A ,0-l?, 
1.795 x ,0-,&i 2.8 ,x ,0-l”” 

7.48 x IO-H> 1.1 n IO x? 
I.398 s 10 -fi5 I .Y5 \ IO”” 
3.1 I I8 x 10 an 3.70 \ IO $8 
2.8364 x ,o -33 2.84 ‘i 10-S 
4.973 1 x 10 t’ 3.w x ,o 1!1 

1.116643 x IO-” 6.454 x IO-” 
3.06663541 x IO-” 1.1270634 x IO 3 
0.1399 9205 7 2.4161 7340 

71 14.5616 970 

98.7148 07’) 8.9140 7088 
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N are C-points and N + 1 are L-points. An initial approximation {up’} = {zJ”)(xk)} is 
iterated by the Newton-Raphson method to yie1d.a sequence {up’}, n = 1, 2, 3,..., 
until convergence to a desired accuracy level for the uk and the du(x,)/dx, is obtained 
for the Nth-order calculation. The main computing task at each Newton-Raphson 
step is the inversion of an N x N matrix. The calculation is repeated for a series of 
increasing values of N until the trend of data as a function of N converges to a desired 
accuracy. 

The D = 1 case for the cosine curve is a comparative benign case. The first and 
second integral equations were also applied to this case and worked well, but not 
with such high accuracy for such low N values. The same appraisal probably would 
apply to the methods enumerated in Refs. [l, 21. 

The cosine curves with D = 5, 10 and the spike curves with parameters as in Table II 
are typical of the boundary curves which motivated the present study of mapping 
techniques. They are characterized by severe crowding at the left end and even rough 
order-of-magnitude accuracy for mapping data on the crowded side poses a severe 
challenge to other currently known techniques. 

The D = 100 cosine curve was included as a stunt to probe the limits of the third 
integral equation in conjunction with the prescribed interspersed quadrature 
technique. 

2. Choice of Initial Approximation and Convergence of the Newton-Raphson Iteration 

Following the nth step of the iteration, one can form an error estimate E(n) by 

(n) _ &-l) 

0) = M,y uk Utn) . 
k 

(5.3) 

If for some n, E(n) < 0.1, subsequent iterations in our experiments always con- 
verged quadratically; that is, the series E(n + l), E(n + 2), etc., decreased at least as 
fast as the series 10-2, 10-4, etc. Thus, after three iterations following the E(n) < 0.1 
level, the Nth-order problem (for N held fixed) is solved to the 1Cfigure accuracy of a 
modern COtnpUter for the Values UI, . This behavior is, however, modified by accumula- 
ted round-off errors. 

Let nNR be the number of Newton-Raphson steps which, proceeding from the 
initial approximation, are done before reaching E(n) < 0.1. Then nNR is primarily a 
measure of the quality of the initial approximation for u(x). If the choice of the z&O’ is 
sufficiently poor, the iteration may diverge. 

We consider two alternatives for the initial approximation: 

(A) The “zero” approximation. This refers to the simplest choice of input, namely, 

u’“‘(x) = x for all x. (5.4) 

As a representative example, consider cosine curves and calculations of order N = 30, 
with an adjustment factor as defined in (lV.4.e) off = 10-5. Then the iteration process 
converges for all D at least up to D = 100. For D = 1, 5, 10, 100, we find nNR = 8, 

581/36/3-8 
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12, 17, and 24, respectively. If, instead,f = 10-3, then for the same D-values, nNR = 6, 
8, 10, and 51, respectively. In general,f = 1O-5 is recommended for a first experiment; 
it leads to significantly faster convergence in extreme cases of crowding like D = 100, 
and to slightly slower convergence for smaller D-values. 

The success of the trivial input assumption (5.4) is quite remarkable. For the D = 
100 cosine curve, it means that 80 % of the input u-values are wrong by from 5 to more 
than 100 orders of magnitude; yet the Newton-Raphson process converges to better 
than 10 % relative accuracy for all u-values in as few as 25 iterations and converges to 
computer round-off accuracy in 3 additional iterations. This suggests that the com- 
bination of Newton-Raphson and adjustment procedures will suffice to solve the 
conformal map integral equation for a large class of boundary curves with little or no 
advance information about the character of the function U(X) to be determined. 

Now suppose that the zero approximation is adopted, but the adjustment process is 
not utilized. Then convergence is sensitive to whether y, is eliminated by (4.15) or by 
the analogous equations for j(rr), and the latter is better. Even so, the Newton- 
Raphson iteration will diverge for cosine curves with D of the order of one or more, 
the specific D-threshold for divergence depending on N. As a practical matter, the 
adjustment process or some equivalent to it is necessary for success of the method, 
except for cases of slight crowding. 

(B) The “shifted circle” approkimation. The number of needed Newton-Raphson 
iterations can be substantially reduced by a better choice for u(O)(x). Here, we define 
an elementary method for improvement based on the correspondence between 
periodic geometry and circular geometry. As noted in more detail in Section VI 11, the 
mapping W = -e-iw carries the real w axis into the circumference of the unit circle 
1 W 1 = 1 in the complex W plane. Similarly, periodic curves y = f(x) are mapped 
into certain closed curves in the complex Z plane, Z = X + iY, by Z = -e-i” and 
the original conformal map problem may be reformulated in terms of a mapping 
from the W to the Z plane. 

Figure 4 portrays, roughly, the image curve in the Z plane for a curve y = s(x) in 
the z plane of the general type we have been studying. The curve has an oval shape 
in the large, but may have more complex shape in the immediate neighborhood of 
X = 0. Also shown in Fig. 4 is a circle drawn with the same horizontal diameter as 
the image of y = 9(x). The circle has a radius R and is centered at Z = X0 , where 

and 
R = i(Xmax - Xmin) = &(e”(n) + e;(O)) (5.5a) 

x0 = wmax + Xmin) = $(,9(U) - eQ’o’). (5.5b) 

The conformal map which carries the unit circle / W 1 = 1 onto the circle of Fig. 4 is 

Z=RW+X,. 

We now use this transformation, reexpressed in terms of the z and w planes, to define 



NUMERICAL CONFORMAL MAPPING 

Y 

2- 

0 
-I 0 Xrnl” 2 x0 4 6 x max 8 

X 

393 

FIG. 4. The oval curve and superimposed circle in the Z-plane, Z = -e-iz provide the basis, 
for an initial approximation u’“‘(x) for the boundary map function generated by a boundary in the 
z-plane. See Section V.2. 

an initial approximation for u = u(x). Given a point (X, Y) on the image curve in the 
2 plane, with 0 and 4 denoting the polar angles of this point in the Z and W planes, 
respectively, the geometry of Fig. 4 leads to 

cot I9 = cot + - x0/ Y. 

Making the identifications 6’ = 7r - x, 4 = 7r - u(O)(x), Y = 8”) sin x, we infer the 
desired replacement for Eq. (5.4): 

u(O)(x) = tan-’ ( sin x 
1 cos x + &(+)x” (5.6) 

Equation (5.6) with X0 given by (5.5b) will be termed the shifted circle approximation . 
for u(x). 

The cases D = 1, 5, and 10 in Tables 1 and III were computed with the u(O) defined 
by Eq. (5.6) and an adjustment factorf = 10-l. Use of a smallerfwould increase the 
n,,-values cited in Table 111 in these cases by one or two. 

The remainder of the data in Tables I-IV were computed with f = lo-“. For the 
lowest N-values cited for these cases, the shifted circle approximation was also used. 
Then for larger N-values, interpolations from the u(x) calculated for the next lower N‘s 
were used to define the u(O), accelerating the Newton-Raphson converge somewhat. 
The resulting nN,-values are listed in Tables 111 and IV. They are considerably 
smaller than those generated by the zero approximation. 
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TABLE III 

Convergence of Boundary Map Function Derivatives for Cosine 
Curves with Increasing Order N of the Calculation” 

D=l 

D=5 

D = 10 

D= 100 

N 

Computer 
time (set) per 

NR step 
(CDC-6600) 

15 0.2236 9558 9 1.8644 9953 0 0.09 
10 0.2236 9558 9 1.8644 9953 0 0.04 
5 0.2236 9564 1.8644 9953 0 0.01 
2 0.2244 1.8651 0 <0.003 

40 
30 
20 
10 
5 

1.16277824 x 1O-5 
1.16277824 x 1O-5 
1.1627i88 x 1O-5 
1.164 x IO-5 
1.23 x 10-S 

1.2099 5705 x lo-” 
1.2099 5706 x 10-l’ 
1.2099 576 x lo-” 
1.2099 8 x lo-” 
1.211 x lo-” 
1.29 x lo-” 

2.94 x lo-‘24 
3.23 x 10-124 
4.05 x IO-‘24 
7.5 x 10-124 

15. x 10-124 
75. x 10-124 

3.5991 3060 4 0.87 
3.5991 3060 4 0.43 
3.5991 3060 4 0.16 
3.5991 3060 4 0.04 
3.5988 4 0.01 

60 
50 
40 
30 
20 
10 

4.9038 0596 5 3.03 
4.9038 0596 5 1.61 
4.9038 0596 5 0.88 
4.9038 0596 5 0.43 
4.9038 0596 5 0.16 
4.9038 03 5 0.04 

100 
80 
60 
40 
30 
20 

14.5616 970 9 12.9 
14.5616 970 10 6.62 
14.5616 970 8 3.03 
14.5616 971 8 0.89 
14.5616 8 9 0.43 
14.559 12 0.16 

a See Section V.2 for definition of n ~a and initial approximation for u(x). 

3. Convergence with Increasing N 

The accuracy of the computed u(x) and dujdx must be inferred from the observed 
convergence trend in successive calculations with increasing N. The N-values listed in 
Tables I and II are sufficient to provide the data to the number of figures quoted and 
the approach to this level of accuracy is illustrated in Tables III and IV. We quote no 
more than nine significant figures in any case to avoid round-off error problems and 
the maximum N attempted was N = 100. In cases where N = 100 was not sufficient 
for nine-figure accuracy, the trend in convergence (which was geometric) for N 
increasing up to 100 was used for a conservative extrapolation of the last significant 
figure. (Compare the Table I datum for (du/dx),=, at D = 100 and the trend 
in this datum in Table III.) In general du/dx converges less well with N than U(X) and 
the worst case for convergence is at x = 0, where the crowding is greatest. Thus, the 
convergence of dujdx at x = 0 may be taken to indicate the minimum N needed to 
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TABLE IV 

Convergence of Boundary Map Function Derivatives for Spike Curves with Increasing Order N” 

N nNR 

D = 1, 50 
/3=1 40 

30 
20 
10 

D = 1, 100 
/3 = 0.5 80 

60 
40 
20 

D = 1, 100 
p = 0.35 80 

60 
40 
30 
20 

2.31145931 x lO-3 
2.3114 5933 x lO-3 
2.3114 61 x 10-S 
2.3117 x 10-a 
2.35 x 10-a 

3.7745 x 10-10 
3.79 x IO-10 
3.82 x 10-l” 
4.1 x 10-10 
6.7 x IO-10 

1.51 x lo-‘@ 
1.70 x lo-‘@ 
2.2 x IO-‘0 
4.1 x 10-10 
8.3 x IO-‘8 

35. x IO-‘@ 

1.4568 3154 3 
1.4568 3154 2 
1.4568 3154 3 
1.4568 3154 2 
1.4568 36 8 

1.2786 4476 9 
1.2786 4476 8 
1.2786 4476 8 
1.2786 4476 8 
1.2786 6 8 

1.21514939 12 
1.2151 4939 10 
1.2151 4939 8 
1.2151 4940 8 
1.2151 6 9 
1.219 8 

Q See Section V.2 for definition of n Na and initial approximation for u(x). Computation times are 
sensitive only to N and are like those in Table III. 

ensure a definite level of relative accuracy for the data overall. The trend of du/dx 
values at x = r is illustrative of convergence rates for data in the uncrowded region, 
which is always much faster than the rate in the crowded region. 

Equations (3.37), Eq. (3.38a), and Eq. (3.38b) exemplify the principal intended 
application of our map techniques to boundary-value problems for harmonic func- 
tions. They show that, in general, dujdx data are needed as well as U(X) data. If, for a 
case of severe crowding, accurate harmonic function data are needed near the trough 
region, then accurate values of U(X) and du/dx are also needed in this region because, 
although very small, they multiply logarithms or denominators in the integrals which 
can be compensatingly large. 

Suppose, however, that one deals with a class of problems where accurate harmonic 
function data are only required at the uncrowded end of the boundary or in the 
interior of the region not near to the trough of the boundary curve. Then, for a case of 
severe crowding, the very small values of u(x) and dujdx at the trough end may be 
approximated by zero. For such problems a sufficient (and much lower) estimate of the 
required N is given by the observed convergence of dujdx at x = rr, i.e., the uncrowded 
end. 

4. Interpolation for Intermediate x-Values 

The numerical procedure we have described computes u(x) and du/dx only at 
equally spaced x points. The values of u(x) at additional points may be obtained by 
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interpolation. Due to crowding du/dx may vary over many orders of magnitude. As a 
result, rather than interpolate U(X) directly, it is better to interpolate a slowly varying 
function of U. A suitable function is 

g(cos x) = log ( sin,“l;“) ). 

At the endpoints, 

g(l) = 1% ($)z=, and g(- I) = log $- 5=rr. ( 1 

By interpolating the function based on cos x as the independent variable, additional 
values of u(x) may be obtained. 

An alternate approach would be to go back to the original quadrature rules for 
approximating the third integral equation. We shall discuss this mainly to point out a 
certain pitfall. Suppose we approximate Eq. (3.23) by evaluating the integral with the 
C-rule of order 2N for arbitrary x. We get 

m = Ym + $7 uog I cos u(x) - cos ui / - log 1 cos x - cos xi I} 
z 

= y, + (1 - -&) log 2 - + log j COSNXI +~~logIcosu(x)-~osv~,. 
z 

(The summations over i refer only to those xi which are C-points.) This can be 
rewritten in the form 

L(x) = &), (5.7) 

,qx) = (#--1/N) 1 cos ~~ ll’N e-%, (5.8) 

R(u) = n I cos 24 - cos ui I 
I I 

l/N 
. 

t 

The function R(u) has N zeros, one for each u = ui . In order for (5.7) to have a 
monotonically increasing solution u(x) the function L(x) must have zeros only at the N 
points x = xi and the extrema of L(x) and R(u) must correspond. In this case, between 
successive minima and maxima, (5.7) has a unique solution which can be used to 
assign values to u(x). In general, extrema of the L(x) and R(u) will differ by some small 
amount of the order of the error in the overall calculation. Therefore, (5.7) will fail to 
have a well-defined solution near the extrema. 

Mitchell Feigenbaum of Los Alamos has found an alternative approach which 
avoids this difficulty. He would choose a set of xi which are C-points and apply the 
C-rule to evaluate the integral at a set of points x, which are precisely the extrema of 
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L(x) given by (5.8). The unknowns are the sets of ui = u(x~) and U, = u(x,,J. The sets 
of equations determining them are 

&7l) = R(%J, 0 = (dR/du),,,, . 

Then the calculation produces an exact match at the extrema of L(x) and R(u). The 
method fails if L(x) has more than one extremum between adjacent quadrature 
points; this can be avoided by making N, the order of the rule, large enough. The 
details of this method will be described elsewhere by Feigenbaum. 

Feigenbaum’s method requires an analytic representation of j(x) in order to 
determine where the derivatives of L(x), as given by (5.8), vanish. The method seems 
inappropriate if j(x) is specified by a finite number of data points, for some inter- 
polation scheme will then be needed to evaluate the zeros of dL/dx; this would 
probably be the source of largest error in the calculation. 

5. Calculation of the Map in the Interior of the Regions 

Expressions for an analytic function F(w) in the interior of R in terms of boundary 
values are given by (3.6a) and (3.6b). With the replacements of Eqs. (3.13) we get 

I 
77 

z = w + sin w y(u’) du’ 
0 cos w - cos u’ 7l 

and 

-iz = ym - iw - 
s 

m sin u’[x(u’) - u’] du’ 
0 cos w - cos 24’ 7. 

Integrating by parts and applying (3.1 la), we also have 

-iz = y, - iw + low log(cos w - cos 24’) (& - +, 

= Ym + log 2 + 
s 

dx’ * log(cos w - cos u(x’)) - 
0 7-r 

For the calculation of z = z(w) when u = Im(w) is large, any of the above formulas, 
approximated by, e.g., a C-rule or an L-rule, is serviceable. But for u --f 0, the ima- 
ginary parts of the integrands vary sharply within a small interval and are best 
avoided. Taking the real parts only, we have these alternatives (among others): 

X(U, U) = u + Re Y(U’> du’ 
cos w - cos u’ 77 1 ’ 

Y(U, u) = Y, + u - Re 
sin u’[x(u’) - u’] du’ 
cos w - cos u’ -7 . 1 (5.11) 
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SettingF(w) = 1 in Eq. (3,6a), we find 

Re n 
[I 

sin w du’ 0 -= 
0 cos w - cos u’ ?r I 

This permits a subtraction in the integrands of (5. IO), (5.11) to make the integrals more 
regular for u --t 0: 

x(1(, v) = u + Re sin w 
[ I 

n 9(x’) - j(x(u)) du(x’) dx’ 
0 cos w - cos u’ -z- - 77 1 ’ (5.12) 

Y(U, 4 = yrn + u - Re [IO sin u(x’)[x’ - u(Y)] - sin w[x(u) - u] du(x’) dx’ 
cos w - cos u’ --z--F* I 

(5.13) 

Once u(x) and du/dx are determined at sufficiently many data points along y = g(x), 
Eqs. (5.12) and (5.13) suffice to determine the mapping from the interior of R, to the 
interior of R, . 

As an application, consider Fig. 1, which illustrates the map induced by y = -5 
cos x in terms of a rectangular grid in the w plane and the image grid of curves in the 
z plane. First, a set of equally spaced abscissas xa = krr/lO, 0 < k < 10 was selected 
and the corresponding uk determined by a map calculation. These are precisely the uk 
listed in the D = 5 column of Table I. For the drawing of Fig. 1, a calculation of 
order N = 10 is sufficient. Then the xI, are L-points and (5.12) (5.13) are to be approx- 
imated by the C-rule. The w-plane grid in Fig. 1 b consists of the lines u = uk , u = ulc , 
0 ,< k < 10. Because some uk are very small, not all the rectangular grid lines are 
separately distinguishable in the figure. The image curves of this grid in Fig. la are, 
however, more or less evenly spaced in the area of R, neighboring on y = -5 cos x. 
In particular, the image curves of u = uk intersect y = -5 cos x at x = xk . Note that 
the shaded region of R, in Fig. la, which occupies the whole of R, below the x-axis, is 
the map of a nearly invisible square in the lower left corner of R, ; the side of this 
square has length 0.037. Also, note how rapidly the image curve of u = constant 
flattens out above j&,, . 

VI. A DIFFERENTIAL APPROACH 

Suppose the z-plane boundary curve depends continuously on a parameter t, that is, 
y = 9(x, t). Then the conformal map transformation generalizes to 

z = z(w, t). (6.1) 

The boundary map function, its inverse, and the constant in the third integral equation 
will be denoted by u(x; t), x(u; t), and y,(t), respectively. 
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The main purpose of this section is to derive the formula 

u,(x; t) = sin U(X; t) I” (U’(X” t))2 5(x, 0 - j&(x’, t) dx’ 
0 1 + (yr(x’, t))2 cos u(x; t) - cos u(x’; t) -F ’ (6.2) 

where partial differentiation with respect to x and t is indicated by subscripts. 
This formulation may be useful for a potential problem with a moving boundary. 

Let t represent the time variable. If 9(x, t) is either specified in advance, or deter- 
minable together with gt(x, t) from other data at time t, then (6.2) provides a time 
differential equation for u(x; t). Integration of (6.2) is an alternative to mapping 
calculations, as prescribed in Section IV, which otherwise have to be repeated at 
each time step in a dynamical calculation. 

An additional consideration is noteworthy when the boundary motion as defined 
by y = 9(x, t) is not specified beforehand, but is to be determined concurrently with 
other dynamical data. From (4.29), we have 

Differentiating with respect to t and integrating by parts in one of the resulting terms, 
we get 

(6.3) 

Now when U(X; t) and y,(t) are known, 9(x, t) is determined from (3.23) and uz(x, t) 
from (4.24) and (4.25), all by quadratures. Thus, integration of (6.2) together with (6.3) 
represents a substitute for the task of integrating time differential equations for j(x, t), 
rather than an additional task. 

To verify (6.2), we first ask how ut(x; t) can be related to the boundary value of an 
even-periodic function analytic in R, , so that the integral relations connecting the real 
and imaginary parts of such boundary values can be applied. Following (3.13), we 
have 

z(w, t) = w + iF(w, t) 

where F(w, t) is an even-periodic function and analytic in R, . Then dz(w, t)/dw and 
iz,(w, t) are likewise even-periodic. On the lower boundary of R, , i.e., for v = 0, (6.1) 
becomes 

x + ij(x, t) = z(u, t). (6.4) 

It is understood that in boundary equations such as (6.4) the variables x and ZJ are 
related by u = u(x; t). Then differentiation of (6.4) with respect to t, holding x 
constant, yields 

%x, f) = ( 
dz(w, t) 

d,v ),-, u4x; t) + z,(u, t). 
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( 
ddw, 0 

1 
dx(u; t) 

dw =- du 
+ i 4W; t>, t) 

21=0 du 

= [1 + i$&, t)l/u,(x; t). 

It is now expedient to define a function G(w) by 

G(w) = -iz,(w, t)(dz(w, t)/dw)-l. 

Then G(w) is even-periodic and analytic in R, . Moreover, 

+ iut(x; t). 

Thus, ut(x; t) enters into the imaginary part of G(w) on the boundary, but not into 
the real part. We now apply Eq. (3.8a) to GR(u, 0) and Gi(u, 0). After a change of 
integration variable by 

du’ = ur(x’; t) dx’, 

the result is 

z&(x; t) = u&G t> 92(x, t) 
1 + (A(-% 0) 

2 &(x, t) - sin u(x; t) 

s = x p.v. (%!(x’; tN2 YtW, t> dx’ -. 
0 1 + (&(x’, t))Z cos u(x; t) - cos u(x’; t) 77 (6.5) 

The coefficient of jt(x, t) in (6.5) is the negative imaginary part of (dz/dw)-l at u = 0. 
Since (dz/dw)-l is also even-periodic and analytic, this coefficient can be replaced by 
an integral over the real part of (dz/dw)-l at u = 0 by again applying Eq. (3.8a). When 
this is done, the result is Eq. (6.2), which was to be proved. For numerical purposes, 
(6.2) is preferable to (6.5) because the integral in (6.2) is nonsingular and can be 
evaluated by interspersed Gaussian quadrature. 

As an alternative to variation through a parameter t, one may consider general 
functional variations: 

9(x) -+ jw + V(x), u(x) + u(x) + 624(x). 

Then the content of (6.5) can be reexpressed in terms of functional derivatives: 

&4(x) %4x’) 
zgFy= 1 + (5dx’V [ &.(x’) 6(x - x’) - -y cosu;~~;)~~~~--(x,) 1. (6.6) 
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PART B 

VII. PERIODIC GEOMETRY 

In this section and the next two, the main formulas and methods developed for the 
even-periodic case are extended to related geometries. In addition to providing a 
greater degree of completeness, this allows a more direct comparison of our methods 
with those developed for airfoils. Moreover, certain analytic and approximate 
techniques for the periodic situations appear more clearly and better motivated when 
viewed in the circle geometry. 

1. Representations in Terms of Boundary Values 

Let F(w) be a periodic analytic function in the upper-half w plane, but not neces- 
sarily even, and such that 

F(w) -tF(a) + W/l w I) asIwj-+co. 

Then we redefine the region R, to comprise the upper-half strip -7r < u < rr, 0 < 
u -=c co. For w in the interior of R, , Eqs. (3.la) and (3.3a) are valid. If the integration 
contours in these equations are extended to the boundaries of R, , then 

I 

n 

F(w) = -i sin w 
F(u’) du’ -- 

--n cos w - cos u’ 2rr 

and 

(7.2) 

because the integrals over the vertical boundaries u = --n and u = 7~ cancel by 
periodicity. From (7.1), we infer 

F(w) = I= F(u’) g 
-77 (7.3) 

Next, let w + u from the interior of R, and note that for u and u’ restricted to the 
interval (-n, n), (cos u - cos u’) has zeros for u’ = u and u’ = -u. The generaliza- 
tions of (3.4) for this interval are 

lim sin w 
W'U cos w - cos u' 

= p.v. cos ,“‘! “,,, u, + 7G[S(u - u’) + s(u + 41 (7.4a) 

and 

. I I 

liiu cos ,~‘~ucos w, = p.v. cos ,s’~“,,, u, + 74qu - 4 - %u + 41. (7.4b) 
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The useful combination of (7.4a) and (7.4b) is the one that cancels the S(u + u’) term. 
Noting the trigonometric identity 

sin w + sin U’ =- 
cos w - cos u’ cot ; (w - u’), (7.5) 

we average (7.1) and (7.2) to get 

F(w) = ; F(c0) + ; j-; cot ; (w - u’) F(u’) -g . (7.6a) 
77 

For w interior to R, , w* is outside, and so the same process yields 

0 = ; F(m) + f s_” cot ; (w* - u’) F(u’) g . 
If 

(7.6b) 

Thus, taking the sum and difference of (7.6a) with the complex conjugate of (7.6b), we 
have the two alternatives: 

F(4 = FR(cQ) - J-;- cot ; (w - u’) F,(u’, 0) g ) 

F(w) = iF,(co) + i I_: cot ; (w - u’) Fp,(u’, 0) g. 

Adding (7.4a) and (7.4b), we get 

li& cot &(w - u’) = p.v. cot +(a - a’) - 2ri 6(u - U’). 

Hence, taking the limit w + u in (7.7a) and (7.7b) we get 

F&f, 0) = FR(oo) - p.v. s_: cot ; (u - U’) F,(U’, 0) g 

and 

F*(u, 0) = F,(m) + p.v. /;n cot ; (U - a’) &(a’, 0) g . 

Adding (3.5a) and (3.5b), we have 

-2 -$ log 1 sin i (u - u’)\ = cot i (ZJ - u’). 

Thus, integration by parts yields 

FR(u, 0) = FR(co) - 2 ST log 1 sin k (u - u’)J ““IIftl: O) g 
--n 

(7.7a) 

(7.7b) 

(7.7) 

(7.8a) 

(7.8b) 

(7.9) 

(7.10) 
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and a similar representation for F,(u, 0). The endpoint terms cancel because Fa(u, 0) 
and F,(u, 0) are periodic. 

In the case where F(W) is even as well as periodic, these formulas reduce to those of 
Section Ill. Conversely, any periodic F(w) can be written as 

F(w) = F,(w) + iF,(w), (7.11) 

where F,(W) and F&w) are even periodic. Then introduction of the representations of 
Section III for F,(w) and FZ(w) in (7.11) leads to an alternative derivation of the 
formulas of the present section. The definitions of these even periodic functions are 

C(w) = [F(w) + F*(-w*)lp, (7.12a) 

F,(w) = [F(w) - F*(-w*)]/(2i). (7.12b) 

2. Integral Equations for Conformal Mapping 

In analogy to the method and notation of Section 111.4, we consider a curve y = $(x) 
in the z plane where 9(x + 2~) = j(x). Let 

2 = z(w) = w + S(w) (7.13) 

be a conformal mapping of the upper-half w plane onto the z-region above y = J”(X) 
which carries w = ice into z = ice. Again we have 

x(u, u) = 24 - F,(u, u), Y(% 4 = u + F&4 u), (7.14) 

and x(u), y(u) defined by 

x(u) = x(u, 0) = 24 - F,(u, O), Y(U) = Y(U, 0) = F&4 0). (7.15) 

And also, y(u) = $x(u)). 
The periodicity of Fr implies 

x(n) - x(-9) = 277. (7.16) 

Since addition of an imaginary constant to F(w) does not alter the nature of the 
map, we are at liberty to specify 

x(3-r) = ii-, x(-77) = -7r. (7.17) 

In the limit u -+ co, we have 

x(u, v> - 24 + x, , Y(k 4 - + Ym , (7.18) 

where x, and y, are identified with --F,(W), FR(co), respectively. 
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Then Eqs. (7.8) convert into 

and 

x(u) = 2.4 + x, - p.v. ST 
-97 

cot ; (u - 24’) y(d) g (7.19a) 

Y(U) = Ym + P.V. “f= cot ; (24 - u’)[x(u’) - u’] g . (7.19b) 
-77 

These are the analogs of the first and second integral equations for the mapping 
problem derived in Section III. To obtain the analog of the third integral equation, we 
first evaluate the integral 

Z(u) = Sff log / sin k (U - u’)/ g. 
--IT 

We have 

1 - cos(u - u') du' 2 1 2n 
= ; j; (log 1 1 - cos u’ I - log 2) $; 

* 

= - log 2, independent of u. 

Thus, by (7.10) and (7.14) 

j(x) = ym + 2 log 2 + 2 S: log 1 sin i (u(x) - u(x))/ g . 

(7.20) 

(7.21) 

Setting F(w) = 1 in (7.8b), we infer 

p.v. J”V cot ; (24 - 24’) g = 0. (7.22) 
--n 

With this and (7.18), the three integral equations can be expressed in nonsingular form 
as 

x(u) = 24 + x, - 
s 

n cot ; (u - u’)[y(u’) - y(u)] g ) (7.23a) 
-77 

cot ; (u - u’)[(x(u’) - 24’) - (x(u) - u)] g ) (7.23b) 

j(x) = y, + 2 1-1 log ( s'ns!;";; 1 $'" / g. (7.23~) 

The term X, in (7.23a) can be removed by setting x(u) + x(u) + x, ; this amounts to 
an adjustment of x(u, v) at the cost of giving up the specifications (7.17). 
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3. The Theodorsen Form 

The singularities of (7.19) can be removed in another way. Since both cot $(u - u’), 
and y(u’) are of period 27r in u’, we can translate the integrals to get 

p.v. I” cot ; (U - u’) y(u’) du’ = - p.v. jn cot (; u’) y(u + u’) du’, 
-m --IT 

which shifts the singularities to the fixed point U’ = 0. If we then apply the rule 

(7.24) 

Eqs. (7.19) become 

x(u) = u + x, - ; j; cot (; u’) [Y(U - u’) - y(u + u’)] $ , (7.25a) 

Y(U) = y, + ; 1; cot (; d) [x(u - u') - x(u + u') + 2u'] f’ . (7.25b) 

Apart from the dispensable constant x, , these are substantially the Theodorsen- 
Garrick forms of the conformal mapping equations, or at least will be if the appro- 
priate transition is made to the more familiar case of circle geometry (see next section). 

4. Numerical Procedures 

To apply our Gaussian quadrature methods to the solution of the family of integral 
equations (7.23), we first apply the rule (7.24). If this is done to (7.23a) after replacing 
the cotangent via (7.5) the result is 

x(u) = u + x, 

n sin u[y(u’) + y(-u’) - 2y(u)] + sin u’[y(u’) - y(-u’)] du’ + f S, cos u - cos u‘ 
T. (7.26) 

Similarly, from (7.21~) we get 

3(x) = Ym + Ior 1% j 
2 sin &(u(x) - u(x’)) sin $(u(x) - u(-x’)) d.\-' 

cos x - cos x' 
T. (7.27) 

These equations have the same general character as the equations worked out for 
the even-periodic case, to which they quickly reduce if one puts y(-u’) = y(u’) and 
u(-x’) = -u(x’). Although we have not applied these equations to numerical test 
cases, we see no reason why the methods of interspersed Gaussian quadrature and 
Newton-Raphson iteration, as already described in detail for the even-periodic case, 
should not work equally well. 
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The Theodorsen form (7.25a) is probably of comparable utility to (7.26), but both 
of these have the limitation already noted in Section III in cases of significant crow- 
ding. For most cases, the preferred equation is (7.27). 

5. Harmonic Functions and Their Boundary Values 

Consider a periodic harmonic function f(x, y) with its boundary value, tangential 
derivative, and normal derivative along y = g(x) specified by f(x) =f(x, F(x)), 
fs(x), fY(x). The procedure here follows that of Section 111.5. We consider the com- 
panion functions df(x)/dx, fnsq( x as defined in that subsection. We consider the ) 
mapping from R, as already prescribed and the functionf(u) =f(x) with the related 
definitions 

3du) = 9 ($g’, jn(u) =fns*(x) ($q’. 

We define an analytic function F(w) in R, by 

F(w) = $-is” 
--n 

cot ; (w - u’)3(u’) g . 

Then we can identify, by comparison with Eq. (7.7b) and Section (IILS), 

3(u) = F&, 0), 3Ju) = -‘;f’ ‘) , 
and 

= 3n(4 + 47du). 
v=o 

Exploiting the representations already worked out, we get the relations between 
boundary values and boundary derivatives off(x, y) in nonsingular integral represen- 
tations as follows: 

f(x) =fm + 2 [” log I sin %4x) - u(x’Nl [fdx’) - fns&)l dx’l(24 

+ fn,*&(,~ - Ym - 2 h3 21, (7.28a) 

with 

(7.28b) 

Also 

~ = IV cot ; (u(x) - u(x’)) [fn,(xf) q - fnsg(x) %] g dfC-4 
dx -,, 

(7.29) 

and 

fnso(x) = - j” cot ; (u(x) - u(x’)) [+p q - q qp] g . (7.30) 
-n 
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VIII. CIRCLE GEOMETRY 

1. Correspondence with Periodic Geometry 

The conformal map problem for the interior or exterior of a simply connected 
bounded region has the same structure as that already treated for a half-plane with 
periodic boundary. Here, we consider conformal maps onto the exterior of the unit 
circle. The formulas and methods already developed for periodic geometries can be 
directly transcribed to the circular case. 

We continue to regard the z and w planes as the domains for periodic problems. We 
gain let R,, denote the upper half strip -n < u < r, 0 < t’ < co, and let R, be the 
image region bounded below by y =: j(~). Consider also the Z and W complex planes 
with Z = X t il’, W :-: lJ -I- iv. Let r, 19 be polar coordinates in the Z plane and 
p, 4 be polar coordinates in the W plane. Consider the transformations 

Z ~_ -(,--iz, w _ -e-itll, (8.1) 

In terms of coordinates, (8.1) implies 

r=e~,H=n-x and p = ev, 4 = rr - u. (8.2) 

The transformation of z to Z maps R, onto the region R, exterior to the curve 

r = q(j) _ eG(ir-e)~ 

Similarly, R, is mapped onto the region R,+, exterior to the unit circle. The vertical 
boundaries of R, are both mapped onto the line, 1 < U < cc, V = 0, and the points 
at cc correspond. 

Suppose F(W) is an analytic function in the region Rw and converging to F(cc) as 
1 W / ---f co. From (7.8) and (8.2) we can write 

and 

FR(eid) = FR(co) + p.v. b’ cot i (4 - q5’) F,(ei6’) g , (8.3a) 

F,(ei6) = F,(a) - p.v. J-2n cot t (4 - 4’) FR(ei”‘) $ . 
0 

(8.3b) 

Let Z = Z(W) be the conformal map from Rw to R, which maps the point 1 W j = 
co onto the point 1 Z I = co. We denote the coordinate transformations by 

r = r(f, 4) 

and the boundary functions by 

and L9 = e,, $1, (8.4) 

Thus, 
44) = 4, 4) and 4#) = d<L 4). 

r(4) = W(4)). 

581/36/3-9 
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Furthermore, we define rm and 0, by 

F-2 rtp, b) = pr, , (8.7a) 

F+$ et,, $1 = d + 6x3 > (8.7b) 

with 8, implicitly determined by the standardization e(O) = 0. The transformation of 
Eqs. (7.23) to circular geometry gives 

et+) = 4 + 8, - Jozn cot ij (4 - 6’) b3[r(~‘Yr(~)l~ w3) 

and 

log r(d) = log rcc + I” cot ; (4 - d4Kw’) - 4’) - (et+) - &I ;$ . (8.9) 
0 

The third integral equation, in the form (7.27), becomes 

log i(e) = log rm + for log 1 2 S*n HW) -c~~~~~i,no~~df) - wvi 1 $. 
(8.10) 

By (8.2), we have dujdx = @/de relating the measures of crowding in the two 
schemes. Even if a problem is originally posed in the periodic framework, it may be 
easier to estimate the character of the mapping function by transforming to the 
equivalent circle scheme. In circle geometry, the crowding is likely to be proportional 
to a ratio of the natural geometric parameters that characterize the curve, whereas, as 
is already suggested by (8.1), exponentials of the natural parameters (e.g., such as D 
for cosine curves in Section V) come into play in the periodic scheme. Thus, the 
shifted circle approximation of Section V.2 was motivated by the circle geometry 
analog. 

A single-valued boundary curve in periodic geometry corresponds to a star-shaped 
region about the origin when transformed to circle geometry. If the region is star 
shaped about a point other than the origin, then after a translation W’ = W - W, 
our conformal map procedure may be applied. This has application in hydrodynamics 
when an interface bends back on itself; e.g., the breaking of a surface (water) wave or 
the late stage of Kelvin-Helmholtz instability. More generally, a conformal map does 
not preserve the star-shaped property. As a result, a suitable choice of a “premap” 
may be used to extend the conformal map procedure to more general regions. 

The conformal maps discussed in this paper carry the point at co into the point at 
co. It is worth noting, that more general maps may be convenient for certain potential 
problems, e.g., in even-periodic geometry when the potential or its normal derivative 
vanishes on the side boundaries and at co. The additional generality can be introduced 
by considering transformations which leave the boundary of the region invariant. 
Their form can be inferred from the relation to circle geometry, where, as is well- 
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known, the general conformal map which takes the exterior of a circle onto itself 
(while shifting the point at co) is 

W’ = ei”( W - p)/(l - p* W), 

witharealandlpl <I. 

IX. LINEAR GEOMETRY 

Lastly, we record the basic formulas for linear geometry, which algebraically is the 
simplest of all. 

Suppose F’(w) is analytic in the upper-half w-plane and tends to F(W) as I w I + co 
in the region. Then the boundary relations are given by the well-known Hilbert 
transforms: 

F&l, 0) = FR(co) - y. f m mu’, 0) &’ 
-m u-u’ ’ 

F,(u, 0) = F,(co) + y j+m yy du’. 
--m 

Let y = g(x) be a curve in the z-plane with j(x) + 0 as I x I --f co. Then the three 
nonsingular integral equations which specify the mapping z = z(w) which carries the 
part of the z plane above y = j(x) onto the upper-half w-plane, according to the 
scheme of the previous sections, are 

and 

(9.4) 

(9.5) 

Again, (9.5) is expected to be the most generally useful of the three for numerical 
work. 

X. SUMMARY 

Complex variable techniques have been used to derive a series of integral equations 
for the determination of conformal transformations in two dimensions. Three of these 
equations, Eqs. (3.21), (3.22), and (3.23) of the text, have been tested in extensive 
numerical experiments in the context of even-periodic geometry. The third equation on 
the list was the most successful, especially in mapping situations with severe crowding, 
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although the first two were adequate for cases of lesser crowding and for calculation 
of the mapping in the interior of the region at a lesser level of accuracy. The numerical 
procedures have been explained in sufficient detail, it is hoped, to make them directly 
usable by other investigators. The qualitative characteristics of a conformal map in a 
case of substantial crowding are indicated by Fig. 1, and the quantitative results 
obtainable from the third integral equation, as regards accuracy, convergence, and 
computer time have been represented in Tables I through IV. The differential equation 
for the map function derived in Section VI appears to be a promising approach for 
problems with time-dependent boundaries as it avoids the necessity for any matrix 
inversions or Newton-Raphson iterations; we have not yet explored its feasibility, 
however, in a practical application. 
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